Chapter 6
Finite Differences

6.1 Introduction 1 y=f(x)

For a function y = f(x), finite differences refer to '

changes in values of y (dependent variable) for any /
finite (equal or unequal) variation in x (independent '

variable).

In this chapter, we shall study various differencing
techniques for equal deviations in values of x and
associated differencing operators; also their
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applications will be extended for finding missing

’ ) Xp X1 Xz X3 X5 Xs X
values of a data and series summation.

6.2 Shift or Increment Operator (E)

Shift (Increment) operator denoted by ‘E” operates on f(x) as Ef (x) = f(x + h)
Or Ey, = y,.n ,Where ‘h’ is the step height for equi-spaced data points.

Clearly effect of the shift operator E is to shift the function value to the next
higher value f(x + h) or y,.,

Also E2f(x) = E(Ef(x)) = Ef(x + h) = f(x + 2h)

~E"f(x) = f(x +nh)

Moreover E71f(x) = f(x — h), where E~!is the inverse shift operator.

6.3 Differencing Operators

If vo, 1, ¥, ..., be the values of y for corresponding values of x,, x;, x5,
.. Xy, then the differences of y are defined by (y1 — vo), (V2 — ¥1), ., O —
Yn—1) , and are denoted by different operators discussed in this section.

6.3.1 Forward Difference Operator (A)

Forward difference operator ‘A’ operates on y, as Ay, = Yy+1— Y«
Or Af(x) =f(x+h)—f(x) ,where histhe height of differencing.

~ Ayo =y1i— Yo
Ay, =y,—
Ayn =Yn+1— In

Also A%yy = Ay;— Ayy = (y,—y1) — (1= Yo) = ¥2 — 2y1 + Yo

A'yo =y, — "CiYn_1 + "CoYp_p — -+ (D" C, 1y + (1) yy
Generalizing Anyr = Yn+r — nClyn+r—1 + nCZyn+r—2 — et (_1)ryr

Here A" is the nt" order forward difference: Table 6.1 shows the forward
differences of various orders.



Table 6.1 Forward Differences

| | A 5 A3 A4 AS
z Yo
By,
x1 : Ay
> A3y,
xz yz Azyl A4y0 ..................... A
- A3yl A Yo
: ) A2 Vs A4y1
N A3y,
. ) A%y,
Ay,
Xs -

The arrow indicates the direction of differences from top to bottom. Differences in
each column notate difference of two adjoining consecutive entries of the previous
column,

Relation between A and E
A and E are connected by the relation A= F — 1
Proof: we know that Ay, = y,.1— W

= EYn— Wn

= Ay, = (E_l)yn
>A=E—-1or E=1+4+A

Properties of operator ‘A’
e AC =0, C being a constant
o ACf(x) =Cf(x)
e Alaf(x) £bg(x)] =aAf(x) £ b Ag(x)
e Alf(x)g(x)] =f(x+h)Ag(x)+ gx)Af(x), f & g may be interchanged
A f(x)] _ 9OAfG)—f (x)Ag (x)
g(x) g(x+h)g(x)

Result 1: The n*! differences of a polynomial of degree 'n" are constant and all
higher order differences are zero.
Proof: Consider the polynomial f(x) of nt" degree

f(x) = apx"+ a;x" '+ ax" 2+ +a,_1x +a,

First differences of the polynomial f(x) are calculated as:

AfC) =fx+h)—f(x)
=a0[(x+h)"—x"]+a1[(x+h)" b xn= 1]+ +apq[(x +h) —x]
= aonh x"' + a; x"” +ax"2+ +a, h+a,

where a; ,ay,...,a,_;, a, are Nnew constants
= First difference of a polynomlal of degree n is a polynomial of degree (n — 1)

Similarly A%2f(x) = A f(x + h) — A f(x)



=aon(n — D2 x" 2+ a; x" 3 + . +a,
=~ Second difference of a polynomial of degree n is a polynomial of degree (n — 2)
Repeating the above process A" f(x) = apn(n — 1) ...2.1A" x™ ™"
= A" f(x) = ayn! h™ which is a constant
- n'" Difference of a polynomial of degree n is a polynomial of degree zero.

Thus (n + 1)t and higher order differences of a polynomial of nt* degree are all
zero.

> The converse of above result is also true , i.e. if the n‘" difference of a
polynomial given at equally spaced points are constant then the function is
a polynomial of degree ‘n’.

6.3.2 Backward Difference Operator (V)

Backward difference operator ¢ V> operateson y, as Vy, = y,— ¥,,_1

~ The differences (y1 — vo), V2 — y1), o, Wy — Yn—1) When denoted by
Vyi, Vy,, ..., Vy, are called first backward differences.

Also V?y, = Vy, — Vy,_; , V3y, = V?y, — V?y,_; denote second and third
backward differences respectively.
Table 6.2 shows the backward differences of various orders.

Table 6.2 Backward Differences

X y \Y v2 v3 = y
X, ”
Vy,
X1 Y1 vzyz
Vy, v3y3
X2 y2 sz 3 v4y4
Vy; V3y4 Vsys
x3 y3 vzy4 V4y5 ............................... '
N V35, e
. . VZ..}.’.s. ...........................
VY5
X N

The arrow indicates the direction of differences from bottom to top. Differences in
each column notate difference of two adjoining consecutive entries of the previous
column,ie. Vy, =y, -y, V2y2 =Vy, —Vy,, o, VPys = Viye — iy,

Relation between V and E
V and E are connected by the relation V=1 - E~!
Proof: we know that Vy, = y,— v,,_1

=Yn— E_1Yn

= Vyn = (1 - E_l) Yn
>V=1-E!




6.3.3 Central Difference Operator (8)

Central difference operator © 6 * operateson y, as 8§ ¥, =y, 1=y, 1
2 2

~ The differences (y1 — vo), V2 — y1), o, Wy — Yn—1) When denoted by
8y1, 8ys, ..., 8y 1 are called first central differences.
2 2 2
Also 8%y, = 8y ,1— 8y 1,8, =38% ,1—6% 1 denotesecond and third
2 2 2 2
central differences respectively as shown in Table 6.3.
Table 6.3 Central Differences

Xo Yo
Sy1
2
X1 V1 82y1
Sys3 83ys
2 2
8ys 5ys 8°ys
2 2 2
X3 V3 §2 Y3 84y3
8y7 53y7
2 2
X4 Ya 82y4
8y9
2
X5 Vs

Central differences in each column notate difference of two adjoining consecutive
entries of the previous column, i.e. 8y: =y, —y , ..., 8°ys = 8%y; — &%y,.
2 2

Relation between 8§ and E

1 1
6 and E are connected by the relation 6 = E2 —E™ 2

Proof: we know that 8 y, =y, 1—y, 1
2 2

1 _1
= EZ:Vn_ E 2Yn
11
= San(EZ—E z)yn
1 1
~ 0= (EE - E_E)
Observation: It is only the notation which changes and not the difference.
"Y1~ Y = Ayo=Vy, =0y
6.3.4 Averaging Operator ()

Averaging operator ¢ i’ operateson y, as py, = %(yx# + yx_g)
2 2



Oru f(x) = %(f (x+8)+7(x- g)) "“h* is the height of the interval.

Relation between u and E
( h +y )
(E Yot E- Zyn)
= wy = (B +E77)y,
= —(Ez +E” )

Result 2: Relation between E and D, where D = %

We know that py, =

| — Nlr—‘ NIH

2
We know y(x + h) = y(x) + hy'(x) + };—' y'(x)+. .

= y(x) + h Dy(x) +§ D%y(x)+...

=(1+mD+2 D2+ )y

= Ey(x) =ey(x)

d
.‘.E=ehD,DE—
dx

Result 3: Relation between A and D, where D = %
We know that A= E -1

>A=eh? -1 “ E =elP
Result 4: Relation between V and D, where D = %
Weknowthat V=1—E1=1—¢ "D “ E
Result 5: Relation between A and V
We knowthat E =1+ A (D
Also El =1-V
—_1
= E = v @
=>1+Azﬁ From D and @
= =1 _1
1-V
= = _v
T 1-v

Result 6: Relation between p, é§ and E

We have p= %(E% n E‘%)

By Taylor’s theorem

ehD



Also o)

1 1
(51 -5}
1 1 1 1
(E2+E77) (B2 —E2)
= us E%(E —E™1)
Result 7: Relation between p, 6 ,Aand V
We have ué = 2 (E — E~1) =—[(1 + 4) — (1 - V)]
> w=-(A+V)

2
Result8: Ay, = V'y, ..

N | =

= ud

We have A"y, = (E — 1)y, “A=FE -1
= Yn+r — nClyn+r—1 + nCZyn+r—2 — et (_1)ryr
= (En - nclEn_l + nCzEn_z — -+ (—1)n)yr
= Enyr - nClEn_lyr + nCZEn_ZYr — et (_1)nyr

= Yn+r — nClyn+r—1 + nCZyn+r—2 — et (_1)nyr
Also V*y,. ., = (1 —E D)y, ., w~V=1-E!

= (1="CE+ "GE? =+ (D"ET)Ypyr

= Yn4r — nClYn+r—1 + nCZYn+r—2 -t (_1)nyr
Anyr = vnyn+r
Example 1 Evaluate the following:
: . _ . +1
i. Ae* ii. A%e” iii. Atan™'x iv.A (xzfm) V. AfE = (i + ferD)ASs
Solution: i. Ae* = e*th — ¥ = g¥(eh — 1)
Ae* =e*(e—1) ,ifh=1
ii. A2e* = A(Ae¥)
= Ale* (e — 1)]
= (eh — 1) Ae*
- (eh _ 1) [ex+h _ ex]
=(e"—1)e*(e" - 1)
= e¥ (eh - 1)2
iii. Atan™'x = tan '(x + h) — tan"'x

- —1( xth—x )
tan (1+(x+h)x
-1

1+(x+h)x

v A () = a()

= tan



=a(5m) =23+ A 3)
=2 (x+1—1 _xlTl) +3(x+1—2 _ﬁ)
=2G-5) 355
CxG-D@E-2)

Vo AfE = féa — 8= G + i) Ferr = fi) = (i + frr) D

Example 2 Evaluate the following:

I. Ae* log2x ii.A( i )

cos 2x
Solution: i. Let f(x) = e* and g(x) = log 2x
We have A[f(x)g(x)] = f(x + h)A g(x) + g(x)Af (x)
. Ae* log 2x = e**"Alog 2x + log 2x Ae*

= e**"[log 2(x + h) —log 2x] + log 2x [e**" — e*]
= e*e" log (1 + %) + e*log2x [e" — 1]

=e* [eh log(l + g) + log2x [e — 1]]

ii. Let f(x) = x?and g(x) = cos 2x
f(x) gx)Af (x)—f (x)Ag(x)
We h A =
e TS 9 G+ ()

cos 2x [(x+h)%—x2]—x?%[cos 2(x+h)—cos 2x]
o cos 2(x+h) cos 2x

_ (h?+2hx) cos 2x+2x2 sin (2x+h) sin h
o cos 2(x+h) cos 2x

Example 3 Evaluate A*[(1 —2x)(1 —3x)(1 —4x)(1 — x)]
,where interval of differencing is one.

Solution: A*[(1 —2x)(1 —3x)(1 — 4x)(1 — x)]
= A*[24x* + -+ 1] = 24.4!.1* = 576
v A" f(x) = agn! k™ and A*x™ = 0 whenn < 4
Example 4 Prove that A3y; = V3y,
Solution: A3y; = (E — 1)3y; vA=E—1
= (B3 —1-3E? + 3E)y;



= E3y; —y3 —3E%y; + 3Ey;3
=Y —¥3—3Y5 + 34

Also V3y, = (1 —E™ 13y, “V=1-E!
= (1-E3—=3E71 +3E %)y,

=Y — Y3 — 3Ys + 3y,

Example 5 Prove that A + V = %_Z

A
Solution: LHS. =A+V= (E-1D+1-E)

=FE—-E!

R.H.S. =27
V A

E—1 1-g1

T 1-g1  E-1

_E-D?-(1-E -1)2
— (1-E)@E-D

(E2+1-2E) — (1+ E‘2—2E‘1)
- E+E1-2

_ E?-E72-2F42E7!
E+E1-2

(E+E)(E-E 1) -2 (E-E)

E+E-1-2
B (E - E-l)(E +E -1—2)
B E+E1-2

=E—E1=RHS.

Example 6 Prove that £ = 1 +%82 + 8 /1 +%82
Solution: RH.S.=1+-8+ & /1 + 82

- 1+§(E%—E‘?1)2 + (E%—E_%)\/l +i(E%—E‘%)
1

1
vO0=E2—E 2

2

1

1
=1+3(E+E"—2)+ (EE—E_?)\/1+%(E+E‘1—2)



1 1 “IN 1
=1+ (E+E'-2)+ (Ez—E z)\/Z(E+E—1+2)

-1t (o) i)

=14+ E+E -2+ (e £ (B2 + E77)

=~ (E+E )+ (E-E)=E=LHS.

Example 7 Prove that V = —182 + 8 fl +162
Solution: R.H.S. ———82+ 8 f1+ 82

=—§(EE—E ) + (E%—E_%)\/l +i(E%—E_%)

1

1
v8§=E2—E 2

2

1 1 _1 1
=—E(E+E_1—2)+(E2—E2 \/1+Z(E+E_1_2)

1 1 _IN 1
:—E(E+E‘1—2)+ (Ez—E z)\/Z(E+E—1+2)

2

=—;E+ET-2)+ (E%—E‘i)\[ (Ez+E 1)
= l@E+rE -+ (B -E7) (BT ETY)
= (E+E'-2)+ (E-E)=1-E1=V= LHS.

1

Example 8 Prove that (i) A — V = 82 (ii) u = /1+%82 = (1+§) (1+A) 2
1
2

1 15 2

1
Solution: (i) &% = (EE - E‘?) —E+E1—-2 <“§=Ez—E 2

=(E—1)—(1— _1)—A v
E—1=Aand 1—-E1=A

(ii) /1+ 8% = \/1+ E7 - ) 8E(E2—E 1)

= \/1 +2(E+E"-2)

= \/i(E+E-1 +2)

- ()




=%(E%+E_%) —u uE%(E%+E_%)
Also (1+§) (1+4)°7 = (1+?) 1+E—1) 2
A =E-1

- (et

i(etee) -

1 2r
Example 9 Prove that (i) A= EV=VE =8E2 (i) E" = (u+3)

Solution: (i) EV=E(1—E-D=E—-1=A wV=1—E"1
VE=(1—E DE=E—1=A
1 1 1 1 1 1
6E7=(E§— )E7= —1=A -.-SE(EE—E‘E)

(M RHS. =

2r
10,1 _1
( E2+E )+3(E2-E z))
1 1 1
o= %(Ei + E_E) and 6§ = E2 — E"2
L 2r N
1 5 5 r —
Example 10 Prove that (i) D = %logE (iii) hD = log(1 + A) = —logifl — V)
(iii) V2= h?D? — h3D3 + Zh*D* +
Solution: (i) We know that E = e"?
= logE = log e"P
= logE = hd log e

= D= %logE v loge =1
(i) hD =logE  From relation (i)
= log(1 + A) v~ E =14+ A
AlsohD =logE = —logE™!
= —logifil — V) wV=1-E!

(iii) We know that V=1 — E~!

= Vzl—l
E



=1—e v E=ehP

_ h?D?  h3Dp3
> V=1-(1-hd+-- = +-)

h2D2 n h3D3
2! 31

= V= hd —

+ .-

2

S Y2 = (hd . hZD2 h3D3 N )

+3!

2

= V2 = h®D? + (hzz?z)

- Z(hd)( ) + Z(hd)( ) —

h*D* h4D4)

4+3

= V2 = h2D2 — h3D3 + (
> V2 = h2D? — h*D® + —h*D* -
Remark: In order to prove any relation, we can express the operators (A ,V,6) in

terms of fundamental operator E.

Example 11 Form the forward difference table for the function
flx)=x3-2x>—-3x—1for x=0,1,2, 3, 4.
Hence or otherwise find A3 f (x), also show that A*f(x) = 0
Solution: f(0) =—-1,f(1) =-5,f2)=-7,f3) =-1,f(4) =19

Constructing the forward difference table:

X f(x) A A? A3 A*
0 1
—4
1 -5 2
—2 6
2 -7 8 0
6 6
3 -1 14
20
4 19

From the table, we see that A3f(x) = 6and A*f(x) =0
Note: Using the formula A" f (x) = ayn! A", A3f(x) = 1.3.1" =6
Also A"*1 f(x) = 0 for a polynomial of degree n, . A*f(x) =0
Example 12 If for a polynomial, five observations are recorded as: y, = —8,
y1 = —6, y, = 22, y; = 148, y, = 492, find ys.

Solution: ys = E>yy = (14+A)°y, +~E=1+A
= Yo + *CiAyy + *CA%yy + SC3M3y, + Chtyy + A%y, .. D



Constructing the forward difference table:

| : ‘ ~ A3 A%
B T
2
x1 " 26
28 72 ..................... b
xz 22 ) 48
126 -
: - 218
344
X4 2
From table Ay, = 2, A%y, = 26, A%y, = 72, Ay, = 48 v @

=y, = —8+5(2) + 10(26) + 10(72) + 5(48) = 1222 using @ in

6.4 Missing values of Data

Missing data or missing values occur when an observation is missing for a
particular variable in a data sample. Concept of finite differences can help to locate
the requisite value using known concepts of curve fitting.

To determine the equation of a line (equation of degree one), we need at least two
given points. Similarly to trace a parabola (equation of degree two), at least three
points are imperative. Thus we essentially require (n + 1) known observations to
determine a polynomial of n‘"* degree.

To find missing values of data using finite differences, we presume the degree of
the polynomial by the number of known observations and use the result
A" £ (x) = 0 for a polynomial of degree n.

Example 13 Use the concept of missing data to find ys if y, = —8, y; = —6,
y, = 22, y3 = 148, y, = 492

Solution: Constructing the forward difference table taking ys as missing value

x y A A? A3 At A5
X, -8

2
X1 —6 26

28 72
x, 22 98 48

126 120 ys — 1222
x3 148 218 ys — 1174

344 ys — 1054
x, 492 ys — 836

ys — 492

X5 Vs



Since 5 observations are known, let us assume that the polynomial represented by
given data is of 4" degree. « ASy =0 =y, —1222 = 0 or ys = 1222
Example 14 Find the missing values in the following table

X 0 5 10 15 20 25
f(x) 6 ? 13 17 22 ?
Solution: Since there are 4 known values of f(x) in the given data, let us assume

the polynomial represented by the given data to be of 37 degree.
Constructing the forward difference table taking missing values as a and b.

X y A A? A3 A*
0 6
a—=©6
5 a 19 — 2a
13 —a 3a — 28
10 13 a—9 38 — 4a
4 10 —a
15 17 1 a+b—38
5 b — 28
20 22 b—27
b—22
25 b

Since the polynomial represented by the given data is considered to be of
374 degree, 4and higher order differences are zeroi.e. A*y =0
~38—4a=0 and a+bh—-38=0
Solving these two equations, we geta = 9.5 b = 28.5
6.5 Finding Differences Using Factorial Notation
We can conveniently find the forward differences of a polynomial using factorial
notation.

6.5.1 Factorial Notation of a Polynomial
A product of the form x(x —1)(x —2)..(x —r+1) is called a factorial
polynomial and is denoted by [x]"

[x] =x

[x]? = x(x — 1)

[x]® = x(x — 1) (x — 2)

x]" =x(x—1D(x—-2)..(x —n+1)
In case, the interval of differencing is h, then

(" = x(c = ) = h) ... (x - n-1 h)



The results of differencing [x]" are analogous to that differentiating x”
Alx]" = n[x]* 1
A%[x]* = n(n — 1)[x]*?
Ax]" =n(n—1)(n - 2)[x]*3

A" [x]" = nmn—1n-2)..3.2.1 =n!
An+1 [x]n — 0

Also - [] l[x]2 [ " and so on

[[x ]_x3

2

Remark
I.  Every polynomial of degree n can be expressed as a factorial
polynomial of the same degree and vice-versa.
ii.  The coefficient of highest power of x and also the constant term
remains unchanged while transforming a polynomial to factorial
notation.

Examplel5 Express the polynomial 2x2 + 3x + 1 in factorial notation.
Solution: 2x? —3x+1=2x?>—-2x+5x+1

=2x(x—1)+5x+1
= 2[x]? +5[x] + 1

Examplel6 Express the polynomial 2x3 — x? + 3x — 4 in factorial notation.
Solution: 2x3 — x? +3x —4 = 2[x]3 + A[x]? + B[x] —

Using remarks i and ii
=2x(x—1)(x—-2)+Ax(x—1)+Bx—4
=2x34+(A—-6)x*+(-A+B+4)x—4

Comparing the coefficients on both sides
A—-6=-1, —-A+B+4=3
=>A=5 B=4
W 2x3 —x?2 +3x—4 =2[x]® +5[x]* + 4[x] -

» We can also find factorial polynomial using synthetic division as shown:

Coefficients A and B can be found as remainders under x2 and x columns

3 2

X X X
1 2 1 3 4
. 2 1
2 2 1 4=8
_ 4
2 ] 5=A




Example 17 Find A3f(x) for the polynomial f(x) = x® —2x? —3x — 1
Also show that A*f(x) = 0
Solution: Finding factorial polynomial of f(x) as shown:
Letx3 —2x?>—3x—1 = [x]> +A[x]> + B[x] — 1
Coefficients A and B can be found as remainders under x? and x columns

x3 x? x
1 1 -2 -3 -1
- 1 -1
2 1 -1 -4=RB
— 2
1 I 1=A

f)=x3—2x>-3x—1 =[x]>+[x]? —4[x] -1
Nf(x) = M[[x]® + [x]* —4[x] -1 ]
=314+40=6 v A'[x]* =nland A" x]* =0
Also A*f(x) = A*[[x]®? + [x]? —4[x]-1]=0
Note: Results obtained are same as in Example 11, where we have used
forward difference table to compute the differences.

Example 18: Obtain the function whose first difference is 8x3 — 3x% + 3x — 1
Solution: Let f(x) be the function whose first difference is 8x3 — 3x? + 3x — 1
= Af(x) =8x —3x* +3x—1
Let8x3 —3x2 +3x—1 =8[x]>+A4[x]? +B[x] -1
Coefficients A and B can be found as remainders under x? and x columns

x X X

1 8 -3 3 -1
— 8 3)

2 8 5 8=B8B
— 16
8 | 21=A

S Af(x) =8x° —3x% 4+ 3x—1 =8[x]® +21[x]*> + 8[x] — 1
fG) = $[8[x]® + 21[x]? +8[x] — 1 ]
_ B[z]‘* N 21[3x]3 N 8[92c]2 .
= 2[x]* + 7[x]® + 4[x]? — [x]
=2x(x—D(x—-2)x—-3)+7x(x—1D(x—2)+4x(x—1) — x
x2x—-1Dx-2)x=-3)+7x—1D(x—-2)+4(x—1) —1]
= x[2x3 — 5x% + 5x — 3] = 2x* — 5x3 + 5x? — 3x

[x]?

[X]=T,

e



= f(x) = 2x* — 5x3 + 5x% — 3x

6.6 Series Summation Using Finite Differences
The method of finite differences may be used to find sum of a given series by
applying the following algorithm:
1. Let the series be represented by u,, u; , u, , us, ...
2. Use the relation u,, = E"u, to introduce the operator E' in the series.

3. Replace E by A by substituting E = 1 + A and find the sum the series by
any of the applicable methods like sum of a G.P., exponential or logarithmic
series or by binomial expansion and operate term by term on u, to find the
required sum.

Example 19 Prove the following using finite differences:

. X x?2 Au Ay
. u0+u1;+u2;+---=e"[u0+x1—l°+x270+---]
.. ' ' 1 1 S '
1. uO_ul+uZ_U3+’”=EUO—ZAuo‘l‘EAzuO—"'
Solution: i z x = “E < g2
olution: 1. ug +uy ;F Uz o+ = Ug + LU + T £ U + o
xE x2E?
_[1+?+ - u0+---]u0
= e*E Uy = ex(1+4) U
:exexAuO
= er |14yl
=€ 11 2! Uo
Au A% u
— X 0 2 0
=e [u0+x T + x ” + ]
” uO—U1+uZ—U3+"': uO—Eu0+E2u0—E3u0+“'

=[1-E+E*—E3+-]u
=[1+E]_1u0
:[2+A]_1UO

2
1242,
2 2 4
= luO_%AuO +1A uO_

Example 20 Sum the series 12, 22, 32,..., n? using finite differences.

Solution: Let the series 12, 22, 32,..., n? be represented by uy, uy , Uy ..., U4
S = Ugt+u +uy + - 4+u, 4
=4 S == uO + EuO + E2u0 + +En_1u0
= (1+E+E*+ -+ E" Dy,



1-E" E"—1 . 1—n

T gt Tt TS = AT
=5= ((11J;AA))”_—11 o
= {14+ na+ 28207 4 HED0T 3 ] 1}ug
= gy + 20 pu + 2B A2y,

Now uy, = 12 =1

Aquul_qu 22_ 12=3

Azuo =AU1_AUO = Uy —2u1 +u0 = 32 —2(22)+ 12 =2
A3uy, A*uy ... are all zero as given series is an expression of degree 2

P D) n(n 1) (3) n n(n— 13)(n 2)

—n+ 3n(721—1) n n(n—l??(n—Z)

= 1(6n+9n(n— 1) + 2n(n - D(n - 2))

2)+0

=%n(6+9n—9+2n2—6n+4)

= %n(an +3n+1) = %n(n +1)(2n+1)

Ug xAug szﬁo
1-x  (1-x)2  (1-x)3

and hence evaluate 1.2 + 2.3x + 3.4x% + 4.5x3 + -+

Example 21 Prove that uy + uyx + upx? + -+ =

. 2
Solution: uy + Uy x + uyx? + -+ = uy + xEuy + x2E uy +
= (1+xE + x?E? + - )y,
1 a
T 1—xE Yo ' Sw 1
=t
1-x(144) 9 7 (1—x)—xa 0

1 1 u
- xA 40
1 1_Tx
1 xA 1
= — _——_— uO
1—x 1—x

Uy xAug xZAEO o
=1t (1—x)2 t (1—x)3 +- =RHS.




Now to evaluate the series 1.2 + 2.3x + 3.4x% + 4.5x3 + -+
Letuy =12=2, u; =23=6, u, =3.4=12, uz = 4.5 =20, ...
Forming forward difference table to calculate the differences

u A A? A3 A*
Uy = 1.2=2 -
4
u,=2.3=6 2 e
u, =3.4=12 2 0
8 0
u; = 4.5 =20 2
10
u, =5.6 =30
) 2 3 L Yo xAug XZA%O
~1.2423x 4+ 3.4x° +4.5x° + - = . T )2 + 10?3 +
2 4x 2x?
=T (1—x)2 + (1-x)3 +0
2
(1)
Exercise 6A
1. Express y, in terms of successive forward differences.
2. Prove that A"e3* > = (e3 — 1)"e3*+>
3. Evaluate Az( X+ 12 )
x“+5x+6
4, Ifuy=3,u; =12, u, = 81, u3 = 2000, u, = 100, calculate A*u,.
_24A 1,
5. Prove that p = TE 1 +48
6. Find the missing value in the following table

ok~ W B

x|0[5]10[15[20]25
ylel10]- [17] - |31

Sum the series 13, 23, 33,..., n3 using finite differences.

Answers

Vi = Yo + 40y, + 6A%y, + 4A%y, + Aty,
-3(x%49x+15)
x(x+1)(x+4)(x+5)(x+8)(x+9)
—7459

13.25,22.5




